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ABSTRACT 

This paper describes a new method for increasing the number and the volume of hexahedral and prism elements in a hex-
dominant mesh by topological transformations.  The method takes as input a hex-dominant mesh consisting of hexahedrons, 
prisms, pyramids and tetrahedrons and modifies the mesh to increase the number and the volume of hexahedrons and prisms 
while maintaining the relaxed conformity criteria, which allows a connection from two tetrahedrons to a quadrilateral face of a 
hexahedron or a prism.  If a hex-dominant mesh satisfies the relaxed conformity criteria, it can be used in the finite element 
analysis by applying an error reduction scheme on non-conforming faces [1-3], inserting pyramids on non-conforming faces [4], 
or converting the mesh to an all-hex mesh by a template method [5, 6].  With more hexahedrons and prisms in a hex-dominant 
mesh, a more accurate finite element solution can be obtained in a shorter time.  Hence the proposed method increases the 
practical value of a hex-dominant mesh.  Several experiments showed the number of hexahedrons increased by about 10% to 
20%, yielding hex-dominant meshes with 70% to 90% hexahedron volume ratio. 
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1. INTRODUCTION 

This paper describes a new method for increasing the 
number and the volume of hexahedral elements in a hex-
dominant mesh by transforming elements.  In general, a 
hex-dominant mesh yields a more accurate finite element 
solution with a shorter computational time than a 
tetrahedral mesh with the same degrees of freedom, and is 
easier to create automatically than an all-hex mesh.  
However, even with an equal degrees of freedom, the 
accuracy and computational time of the finite element 
analysis depends on the ratio of the number and the volume 
of hexahedrons included in the mesh; increasing the 
number of hexahedrons increases the accuracy of the 
solution and decreases the computational time.  Hence, it is 
important to create a hex-dominant mesh with as many 
hexahedrons as possible and with as much volume as 
possible being hexahedrons.    Or, if possible, a post-

process for a hex-dominant mesh would be useful to 
increase the number and volume of hexahedrons.  (Please 
note that applying subdivision patterns used in [7-9] 
increases the number of hexahedrons, but it does not 
increase the total volume filled by hexahedrons.) 

The proposed method takes as input a hex-dominant mesh 
consisting of hexahedrons, prisms, pyramids and 
tetrahedrons, and increases the number and the volume of 
hexahedrons and prisms while maintaining the relaxed 
conformity criteria, which allows a connection from two 
tetrahedrons to a quadrilateral face of a hexahedron or a 
prism.  The details of the relaxed conformity criteria are 
discussed in Section 3.  The method first subdivides prisms 
and pyramids included in the input mesh into tetrahedrons.  
Then, the method applies sequences of topological 
transformations (explained in Section 4) to increase the 
number of hexahedrons.  Some of the remaining 
tetrahedrons are then merged and converted to prisms [10].  
If the mesh must conform, pyramid elements can be 



inserted between tetrahedrons and a quadrilateral face of a 
hexahedron or a prism via the method presented by Owen 
et al. [4]. 

The organization of the paper is as follows.  Section 2 
reviews previous work of hex-dominant mesh generation.  
Section 3 discusses the relaxed conformity criteria and 
gives a definition of a hex-dominant mesh which is dealt 
with in the proposed method.  Section 4 describes three 
types of topological transformations that modifies some 
elements while maintaining the relaxed conformity criteria.  
Section 5 presents a strategy for applying the 
transformations to increase the number and volume of 
hexahedrons.  Section 6 gives some results of the method, 
followed by discussions in Section 7 and conclusions in 
Section 8. 

2. RELATED RESEARCH 

A few hex-dominant mesh generation techniques have been 
published.  Meyers et. al [11] and Tuchinsky and Clark [12] 
present a method that creates a hex-dominant mesh by 
expanding the plastering method, which is presented by 
Blacker and Meyers [13].  Their method creates 
hexahedrons from the boundary inward by the plastering 
method, and if the plastering method cannot fill entire 
volume with hexahedrons, their method fills the remaining 
volume with tetrahedrons. 

Owen and Saigal present an algorithm called H-Morph 
[14], which converts a tetrahedral mesh to a hex-dominant 
mesh by creating hex elements one by one starting from 
domain boundaries and moving inward.  The method 
always maintains a valid hexahedron-tetrahedron mixed 
mesh during the process. 

Meshkat and Talmor present an algorithm that converts a 
tetrahedral mesh into a hex-dominant mesh based on the 
graph theory [15].  Their method takes a tetrahedral mesh 
as input and creates a graph that represents the topology of 
the tetrahedral mesh.  Their method then searches for a 
pattern that can be converted to a hex or a prism in the 
graph, and when a pattern is found, a new hex or a new 
prism is created, and the graph is updated accordingly. 

Yamakawa and Shimada present a method that first creates 
good node locations for a hex-dominant mesh by packing 
rectangular solid cells in the target geometric domain.  A 
tetrahedral mesh is then created using the node obtained by 
the packing.  Finally, the tetrahedral mesh is converted to a 
hex-dominant mesh by merging some tetrahedrons [10]. 

There is a highly effective post-process for a tetrahedral 
mesh called local transformation [16], which improves the 
quality of a tetrahedral mesh, though, no such method has 
been published for a hex-dominant mesh.  Bern and 
Eppstein present one  method of transforming hexahedral 
elements [17].  However, it is unclear if their method can 
improve the quality of an all-hex mesh or a hex-dominant 
mesh. 

3. RELAXED CONFORMITY CRITERIA 

The topological transformations described in Section 4 deal 
with a hex-dominant mesh that satisfies the relaxed 
conformity criteria.  The criteria allows a connection 
between two tetrahedrons and a hexahedron or a prism 
through a quadrilateral face.  The purpose of the relaxed 
conformity criteria is to increase the applicability of the 
mesh to the finite element analysis and relieve the burden 
of hex-dominant mesh generation.  The traditional 
conformity criterion demands that an interface between two 
elements be identical and that the interface must not be 
shared by a third element.  A tetrahedron thus cannot be 
directly connected to a hexahedron by a face because a 
hexahedron has only quadrilateral faces, and a tetrahedron 
has only triangular faces; this condition makes a hex-
dominant mesh very difficult to create.  To relieve the 
burden of hex-dominant mesh generation, the relaxed 
conformity criteria is introduced, and it allows connection 
between two triangular faces of two tetrahedrons to a 
quadrilateral face of a hexahedron by sharing the four 
nodes.  Such a quadrilateral face connected to two 
triangular faces is called a non-conforming face, or more 
explicitly, a non-conforming quadrilateral. 

Although the relaxed conformity criteria has been 
implicitly used [1-3, 12, 15], a clear definition of the 
relaxed conformity criteria has not been given; here we 
propose a definition of the relaxed conformity conditions. 

Condition 1. For a non-conforming quadrilateral, there 
must be exactly two tetrahedrons that each 
has only one triangle sharing three of the four 
nodes of the non-conforming quadrilateral. 
The quadrilateral obtained by merging the 
two triangles must be equal to the non-
conforming quadrilateral. 

Condition 2. A diagonal of a non-conforming quadrilateral 
must not be an edge of another quadrilateral. 

Condition 3. If two quadrilaterals share only two nodes, 
the two quadrilaterals must share an edge (i.e., 
sharing only a diagonal is not permissible.) 

Condition 4. Two quadrilaterals must not share only three 
nodes. 

For example, the case illustrated in Figure 1 (a) violates 
Conditions 1 and 4 because the left hexahedron is 
connected to the right hexahedron and the tetrahedron 
between the two hexahedrons through a quadrilateral face, 
and the quadrilateral of the right face of the left hexahedron 
and a quadrilateral of the left face of the right hexahedron 
shares only three nodes.  The case illustrated in Figure 1 (b) 
violates Condition 1 because only one tetrahedron is 
connected to the right-hand side quadrilateral of the 
hexahedron, and half of the quadrilateral is exposed to the 
exterior of the mesh.  The case illustrated in Figure 1 (c) 
violates Condition 1 because the right-hand side 
quadrilateral of the top hexahedron is connected to three 
tetrahedrons, and the right-hand side quadrilateral of the 
bottom hexahedron is connected to four tetrahedrons.  The 
case illustrated in Figure 1 (d) violates Conditions 2 and 3 



because an edge of a quadrilateral is lying on the diagonal 
of another quadrilateral.  The case illustrated in Figure 1 (e) 
violates Condition 3 because the right-hand side 
quadrilateral of the left hexahedron and the left-hand side 
quadrilateral of the right hexahedron share two nodes, but 
do not share an edge. 

  

(a) Violating conditions 1 
and 4 

(b)  Violating condition 1 

 

(c)  Violating 1 

  

(d)  Violating 2 and 3 (e)  Violating 3 

Figure 1  Examples of violation of the relaxed 
conformity conditions 

If a hex-dominant mesh satisfies the four relaxed 
conformity conditions, it can be used in the finite element 
analysis by: 

Method 1. Inserting a pyramid on each non-conforming 
quadrilaterals to recover perfect conformity via 
the method presented by Owen et al. [4], 

Method 2. Applying an error reduction scheme, such as 
MPCs [1, 2] or Dohrmann et al.’s [3], or 

Method 3. Converting it to an all-hex mesh by applying 
conversion templates, such as HEXHOOP 
templates [5] or Geode template [6].  (Geode 
template requires another condition in addition 
to the relaxed conformity criteria to be 
applicable; all non-conforming quadrilaterals 
must form a topological ball or terminate at the 
boundary.  Nonetheless, satisfying the relaxed 
conformity criteria makes Geode template more 
likely to be applicable.)   

Applicability of the above methods also depends on a finite 
element solver.  Method 1 can be applied when a solver can 
take pyramid elements.  Method 2 can be applied when a 

solver is capable of imposing an error reduction scheme.  
Method 3 can be applied when a solver is not too restrictive 
about the quality of the all-hex mesh converted from a hex-
dominant mesh.  Nonetheless, satisfying the relaxed 
conformity criteria makes a hex-dominant mesh more 
likely to be applicable to the finite element analysis. 

The next section shows three types of topological 
transformations for a hex-dominant mesh that transform 
elements while maintaining the relaxed conformity criteria. 

4. TOPOLOGICAL TRANSFORMATIONS 
FOR A HEX-DOMINANT MESH 

This section explains three types of topological 
transformations developed in our research: (1) edge-
collapse, (2) node insertion, and (3) shear.  Each 
transformation is performed while maintaining the relaxed 
conformity criteria defined in Section 3.  Applying these 
transformations systematically increases the number and 
volume of hexahedrons in a hex-dominant mesh.  The 
strategy of applying these transformations is explained later 
in Section 5. 

4.1. Edge-collapse transformation 
The edge-collapse transformation collapses an edge that is 
used only by tetrahedrons.  All tetrahedrons using the edge 
are deleted and the two nodes of the edge are joined into 
one node.  If the two nodes of the edge are not used by any 
hexahedrons, the transformation can be easily 
accomplished by merging two nodes into one and deleting 
all degenerating tetrahedrons.  However, if one of the nodes 
of the edge is used by a hexahedron, the relaxed conformity 
criteria may be violated as a result of the transformation, 
and thus the program must check for the violation. 

When the relaxed conformity criteria are violated as a 
result of the edge-collapse transformation, the violation 
may be resolved by applying a subsequent edge-collapse 
transformation.  Figure 2 shows an example of such 
resolution.  Figure 2 (a) shows a portion of a mesh, two 
hexahedrons and three tetrahedrons between them.  When 
edge CF is collapsed, the relaxed conformity criteria are 
violated because quadrilaterals ABC’D and ADC’E shares 
only three nodes as shown in Figure 2 (b).  To resolve the 
violation, edge BE must be collapsed as shown in Figure 2 
(c).  The second edge-collapse transformation may yield 
another violation of the relaxed conformity criteria, and if 
so, the method attempts to resolve the violation by applying 
an additional edge-collapse transformation.  Thus, one 
edge-collapse transformation may yield a series of the 
edge-collapse transformations, which continue until all 
violations are resolved.  However, the violation is not 
always resolved by applying a series of the transformations, 
and if a violation cannot be resolved in the end, the series 
of the transformations must be cancelled. 



 

Figure 2  Edge-collapse transformation: Resolving 
a violation of the relaxed conformity criteria by a 

series of edge-collapse transformations. 

 

4.2. Node insertion 
The node insertion transformation adds a node on an edge 
and subdivides elements using the edge.  If a target edge 
(an edge on which a node is inserted) is used only by 
tetrahedrons, each tetrahedron using the edge is simply 
subdivided into two tetrahedrons by a triangle formed by 
the node inserted on the edge and the two nodes of the 
original tetrahedron that are not connected to the edge. 

Inserting a node on an edge used by a hexahedron, however, 
is not easily accomplished because four subdivision 
patterns are possible; the appropriate pattern must be 
chosen for a configuration around the hexahedron, or the 
transformation cannot be applied if none of the patterns fits 
the configuration.  As shown in Figure 3, when node X is 
inserted on edge FG of hexahedron ABCDEFGH, the 
hexahedron can split into four possible subdivision 
patterns: 

(1) one hexahedron ABCDEFXH and one tetrahedron 
CHGX as shown in Figure 3 (a),  

(2) one hexahedron ABCDEFXH and two tetrahedrons 
DHGX and CDGX as shown in Figure 3 (b),  

(3) one hexahedron ABCDEXGH and one tetrahedron 
BEXF as shown in Figure 3 (c), and  

(4) one hexahedron ABCDEXGH and two tetrahedrons 
AEXF and BAXF as shown in Figure 3 (d). 

To distinguish these patterns, a subdivision pattern is 
denoted as PQ-Rn, which means a node is inserted on edge 
PQ, and R becomes a node of a new tetrahedron (where R 
is equal to either P or Q), and n new tetrahedrons are 
created by the node insertion.  Subdivision pattern (1) is 
thus denoted as FG-G1, pattern (2) FG-G2, pattern (3) 
FG-F1 and pattern (4) FG-F2. 

To apply pattern PQ-Rn, the face of the hexahedron using 
node R and not using edge PQ must be either a non-
conforming quadrilateral or a quadrilateral exposed to the 
exterior of the mesh.  For example, if pattern EH-H1 or 
EH-H2 is applied to the mesh shown in Figure 4, 
quadrilaterals DCGX and DCGH will share only three 
nodes after the node insertion, and condition (4) of the 
relaxed conformity criteria will be violated. 

In addition, to apply pattern PQ-Rn, if a quadrilateral face 
of the hexahedron using edge PQ is a non-conforming 
quadrilateral, one of the edges of the two tetrahedrons 
connected to the quadrilateral face lying on a diagonal of 
the quadrilateral face must not use node R.  For example, 
when two tetrahedrons ADBT and DCBT are connected to 
face ABCD as shown in Figure 5, applying pattern AB-Bn 
yields a violation of condition (1) of the relaxed conformity 
criteria because a non-conforming quadrilateral AXCD will 
not be connected to exactly two tetrahedrons by faces. 

If all hexahedrons using edge PQ satisfy the above 
conditions for pattern PQ-Rn (n can vary across the 
hexahedrons), a node can be inserted on edge PQ.  Note 
that yet the appropriate n must be chosen.  If the 
quadrilateral face using node R and not using edge PQ is a 
non-conforming quadrilateral, one of the edges of the two 
tetrahedrons connected to the quadrilateral face must be 
lying on a diagonal of the quadrilateral face.  If the edge of 
the tetrahedrons lying on a diagonal of the quadrilateral 
face is using node R, n must be 2 as shown in Figure 6 (a).  
Otherwise, n must be 1 as shown in Figure 6 (b). 

  

(a) FG-G1 (b) FG-G2 

  

(c) FG-F1 (d) FG-F2 

Figure 3  Four possible subdivision patterns when 
inserting a node on an edge used by a 

hexahedron 
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Figure 4  Node insertion transformation: Applying 
EH-X1 or EH-X2 to this mesh yields violation of 

the relaxed conformity criteria 

 

 

Figure 5  Node insertion transformation: The two 
tetrahedrons connected to face ABCD must not 

have edge BD 

If the quadrilateral face using node R and not using edge 
PQ is exposed to the exterior of the mesh, n must be 2, or a 
quadrilateral face of the new hexahedron will be connected 
to only one tetrahedron, creating a violation of condition 
(1) of the relaxed conformity criteria. 

4.3. Shear transformation 
The shear transformation shears a hexahedron by re-
connecting a hexahedron and tetrahedrons sharing an edge 
and/or a diagonal with one of the six faces of the 
hexahedron.  Suppose some tetrahedrons sharing an edge 
and/or a diagonal of a face of a hexahedron can be merged 
and converted to a prism.  For example, tetrahedrons JFEI, 
IEDF and EADF shown in Figure 7 (a) are sharing an edge 
and/or a diagonal of quadrilateral IFAD of hexahedron 
ABCDFGHI and can be merged and converted to a prism.  
Now the hexahedron can be split into two prisms by a 
quadrilateral formed by connecting two edges: (1) an edge 
connecting the two triangles of the pseudo-prism and being 
shared by the pseudo-prism and the hexahedron, and (2) the 
opposite edge of edge (1) in the hexahedron.  In Figure 7 
(a), edge (1) can be either ID or FA, and the quadrilateral 
can be IDBG or FACH respectively.  One of the two 
prisms that came from a hexahedron shares a quadrilateral 
face with the pseudo-prism and can be merged with the 
pseudo-prism to become a hexahedron.  The other prism 

must be split into tetrahedrons while maintaining the 
relaxed conformity criteria.  If quadrilateral IDBG is 
chosen to split the original hexahedron ABCDFGHI in 
Figure 7 (a), three tetrahedrons DBCG, DGCH, DGHI, 
and a hexahedron ABDEFGIJ are created as shown in 
Figure 7 (b). 

The shear transformation splits two quadrilateral faces of a 
hexahedron into triangles by adding a diagonal edge.  In 
Figure 7 (a), quadrilaterals HIDC and CBGH are split.  
There are two possible tessellations for each quadrilateral.  
However, when such a quadrilateral is a non-conforming 
quadrilateral, only one of the two tessellations can conform 
two tetrahedrons connected to the quadrilateral.  In such a 
case, an appropriate tessellation must be chosen, and three 
new tetrahedrons must conform to such a tessellation. 

One shear transformation may yield subsequent shear 
transformations when a sheared quadrilateral face of the 
hexahedron is connected to another hexahedron.  For 
example, if the shear transformation is applied to 
hexahedron DABCIFGH of Figure 8 (a) and transformed 
into hexahedron ABDEFGIJ as shown in Figure 8 (b), 
quadrilaterals JIGF and IHGF violate the relaxed 
conformity criteria because the two quadrilaterals share 
only three nodes.  To resolve this violation, the shear 
transformation must be applied to the adjacent hexahedron 
connected to quadrilateral IHGF as shown in Figure 8 (c).  
Furthermore, the second shear transformation may yield the 
third shear transformation, and the series of transformations 
continues until all violations are resolved, or the series of 
transformations must be cancelled if a violation cannot 
finally be resolved. 

 

(a)  n must be two in this case. 

 

(b)  n must be one in this case. 

Figure 6  In a PQ-Rn transformation, n is 
constrained by the tetrahedrons connected to the 

quadrilateral face using node R and not using 
edge PQ 
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(a) Before applying the 
shear transformation 

(b) After applying the shear 
transformation 

Figure 7  The shear transformation: shearing 
hexahedron ABCDIFGH to ABDEJFGI 

 

5. INCREASING HEXAHEDRONS VIA 
TOPOLOGICAL TRANSFORMATIONS 

This section explains three typical patterns in which the 
number and the volume of hexahedrons are increased by 
applying the topological transformations explained in 
Section 4.  The pattern shown in Figure 9 (a) can be solved 
either by collapsing edge HI or inserting a node on edge 
AD.  Figure 9 (a) shows a portion of a hex-dominant mesh 
consisting of a hexahedron on the right and tetrahedrons 
filling the remainder of the portion.  If tetrahedrons left of 
quadrilateral CDHG in Figure 9 (a), are converted to 
hexahedron ABCDEFGH, quadrilaterals CDHG and 
CDIG share only three nodes violating the relaxed 
conformity criteria.  If node X is inserted on edge AD as 
shown in Figure 9 (b), tetrahedrons left of quadrilateral 
XCGH can be converted to hexahedron ABCXEFGH, and 
tetrahedrons filling between hexahedrons ABCXEFGH 
and DCKJIGML can be converted to a prism.  Another 
resolution for this case is to collapse edge HI.  If edge HI is 
collapsed into node Y as shown in Figure 9 (c), 
tetrahedrons left of DCGY can be converted to hexahedron 
ABCDEFGY. 

Figure 10 (a) shows a pattern in which some tetrahedrons 
are trapped between two hexahedrons on the left and right.  
An extra node is needed to convert the tetrahedrons to a 
hexahedron, or a node must be deleted to convert 
tetrahedrons to a prism.  Since the volume between the two 
hexahedrons is enclosed by four quadrilaterals and two 
triangles, we call it a 4Q2T pattern.  The 4Q2T pattern 
shown in Figure 10 (a) can be resolved by inserting a node 
on either edge JK as shown in Figure 10 (b) or IJ as shown 
in Figure 10 (c).  If a node is inserted on edge JK or IJ, 
tetrahedrons between the two hexahedrons will be 
converted to a hexahedron.  Another resolution is achieved 
by collapsing edge BC as shown in Figure 10 (d) or MN as 
shown in Figure 10 (e).  If edge BC or MN is collapsed, 
tetrahedrons between the two hexahedrons will be 
converted to a prism. 

 

  

(a) Initial configuration  

  

(b) After shearing 
DABCIFGH to 

ABDEFGIJ: Violation of 
the relaxed conformity 

criteria must be resolved by 
a subsequent shear 

transformation 

(c) Resolving a violation of 
the relaxed conformity 
criteria by applying the 
shear transformation to 

another hexahedron 

Figure 8  One shear transformation may yield 
subsequent shear transformations (not all internal 

edges are drawn). 

 

  

(a) Before applying a 
transformation 

(b) Resolution by inserting 
a node on edge AD 

  

(c) Resolution by collapsing 
edge HI 

 

Figure 9  A case that can be solved either by 
inserting a node on edge AD or collapsing edge HI 

(not all internal edges are drawn). 
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(a) 4Q2T pattern between 
two hexahedrons 

 

  

(b) Resolution by inserting 
a node on edge JK 

(c) Resolution by inserting a 
node on edge IJ 

  

(d) Resolution by collapsing 
edge BC 

(e) Resolution by collapsing 
edge MN 

Figure 10  Resolving a 4Q2T pattern (not all 
internal edges are drawn) 

Figure 11 shows a pattern that can be resolved by the shear 
transformation.  Figure 11 shows three rows of elements, 
the top row has two hexahedrons on the left and right, and 
the mid row has a hexahedron on the left, and the bottom 
row has two hexahedrons on the left, and the remaining 
portion is filled with tetrahedrons.  If tetrahedrons left of 
GIDB in the mid row are converted to hexahedron 
AEDBFJIG, quadrilateral FJIG shares only three nodes 
with the bottom face of the right hexahedron in the top row, 
and if tetrahedrons right of GJEB in the middle row are 
converted to hexahedron BEDCGJIH, quadrilateral BEDC 
shares only three nodes with the top quadrilateral of the 
right hexahedron in the bottom row; either case creates a 
violation of the relaxed conformity criteria. 

If the right hexahedron in the top row is sheared so that the 
top row pattern matches the bottom row, tetrahedrons left 
of GIDB in the middle row can be converted to hexahedron 
AEDBFJIG, and the remaining tetrahedrons will be 
converted to prisms as shown in Figure 11 (b).  Or if the 
right hexahedron in the bottom row is sheared so that the 
bottom row pattern matches the top row, tetrahedrons right 
of GJEB in the middle row can be converted to hexahedron 
BEDCGJIH and remaining tetrahedrons will be converted 
to prisms as shown in Figure 11 (c). 

A pattern sometimes appears as a combination of the above 
basic patterns.  A sequence of transformations can often 
resolve such patterns. 

 

Figure 11  A case that can be solved by the shear 
transformation (not all edges are drawn) 

6. RESULTS 

Figure 12, Figure 13, and Figure 14 show experimental 
results of the method.  For each example, an input hex-
dominant mesh is created by the method presented in [10].  
Each example includes screenshots of hex-dominant 
meshes before and after applying the transformations, 
remaining tetrahedrons before and after applying the 
transformations, statistics before and after applying the 
transformations. 

In these example cases, the percentage of the number and 
volume of hexahedrons increases, and the number and 
volume of tetrahedrons is reduced by the transformations.  
The percentage of the number of hexahedrons increases 
from 30% to 50% in the hex-dominant mesh shown in 
Figure 12, from 32% to 46% in the hex-dominant mesh 
shown in Figure 13, from 25% to 34% in the hex-dominant 
mesh shown in Figure 14, and from 33% to 43% in the hex-
dominant mesh shown in Figure 15.  The percentage of the 
volume of hexahedrons increases from 67% to 82% in the 
hex-dominant mesh shown in Figure 12, from 70% to 80% 
in the hex-dominant mesh shown in Figure 13, from 66% to 
76% in the hex-dominant mesh shown in Figure 14, and 
from 71% to 80% in the hex-dominant mesh shown in 
Figure 15.   
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These results show that the method effectively increases the 
number and volume of hexahedrons, and decreases the 
number and volume of tetrahedrons. 

7. DISCUSSIONS 

The three topological transformations described in Section 
4 deal only with hexahedrons and tetrahedrons.  Hence, 
when the input hex-dominant mesh includes prisms and 
pyramids, all of them must first be subdivided into 
tetrahedrons.  Or, the three transformations cannot be 
performed near a prism or a pyramid. 

The transformations deal only with hexahedrons and 
tetrahedrons because there are too many configurations of 
neighboring elements if pyramids and prisms are included.  
There are many variations of a configuration of 
neighboring elements even with only hexahedrons and 
tetrahedrons.  The transformations would become too 
complex due to an overwhelmingly large number of 
variations of neighboring element configuration, if prisms 
and pyramids are considered.  Thus it was deemed 
reasonable to limit transformations for hexahedrons and 
tetrahedrons, and subdivide prisms and pyramids in the 
input mesh into tetrahedrons first, and re-create them after 
the transformations are performed. 

The result of the proposed method depends on the order of 
the transformations.  Some transformations performed 
earlier may interfere with further transformations, and 
fewer hexahedrons can be created as a result of this 
interference.  In the current implementation, the program 
searches and resolves the patterns shown in Figure 9 and 
Figure 11 first.  It then searches and resolves the patterns 
shown in  Figure 10.  It iterates the search and resolution 
until no such pattern is found.  However, it is very difficult 
to find the optimal order of the transformations, and thus it 
becomes a subject for future research. 

The effectiveness of the method also depends on an input 
hex-dominant mesh.  However, we could only test the 
method with a hex-dominant mesh created by the method 
presented in [10].  The proposed method works well when 
there are some islands of tetrahedrons, which gives some 
freedom for the transformations.  Threfore, we expect that 
the proposed method will also work well for a hex-
dominant mesh created by Meshkat and Talmor’s method 
[15].  However, the proposed method may not perform well 
for advancing front type methods [11, 12, 14] because such 
methods tend to create less islands of tetrahedrons and the 
remaining tetrahedrons tend to be flatter.  The relation 
between the effectiveness of the proposed method and hex-
dominant mesh generation algorithms is another issue for 
future research. 

Also, when there is more than one option for resolving a 
case, the program must decide which option to choose.  
And, one choice may interfere with further transformations 
yielding fewer hexahedrons.  The current implementation 
chooses the option that gives better quality elements 
measured by the scaled Jacobian [18, 19].  However, 
choosing a less but acceptable quality element may yield 

more hexahedrons.  Choosing an option to resolve a case 
also becomes an issue for future research. 

In addition to the three transformations described in Section 
4, there can be more possible transformations.  There may 
be a better strategy of applying the transformations than the 
strategy described in Section 5.  An ultimate goal of this 
method is to convert the input hex-dominant mesh into a 
fully conformed hex-dominant mesh without using 
pyramids while filling most of the volume with 
hexahedrons.  However, it is unclear if such 
transformations and strategies are possible, and thus it is 
another issue for future research. 

8. CONCLUSIONS 

This paper has presented a new method for increasing the 
number and volume of hexahedrons in a hex-dominant 
mesh by applying topological transformations.  Three types 
of transformations are presented, and by applying them 
strategically the number and volume of hexahedrons in the 
hex-dominant mesh increase.  Some experimental results 
show the method works effectively, and it increases the 
practical value of a hex-dominant mesh.  The experimental 
results show the number of hexahedrons increased by about 
10% to 20%, yielding hex-dominant meshes with a 70 to 
90% hexahedron volume ratio. 
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  Number of nodes 2,375 
Number of Elements 3,308 
Number of Hexes 1,008(30%) 
Number of Prisms    402(12%) 
Number of Tets 1,898(57%) 
 
Total Volume 3,337.7 
Hex Volume 2,243.8(67%) 
Prism Volume    422.8(13%) 
Tet Volume    671.2(20%) 
 

(a) The hex-dominant mesh before 
applying transformations 

(b) Remaining tetrahedrons before 
applying transformations 

(c) Statistics before applying 
transformations 

  Number of nodes 2,336 
Number of Elents 2,367 
Number of Hexes 1,193(50%) 
Number of Prisms    302(12%) 
Number of Tets    872(36%) 
 
Total Volume 3,333.4 
Hex Volume 2,734.1(82%) 
Prism Volume    302.1( 9%) 
Tet Volume    297.2( 9%) 

(d) The hex-dominant mesh after 
applying transformations 

(e) Remaining tetrahedrons after 
applying transformations 

(f) Statistics after applying 
transformations 

Figure 12  Hex-dominant mesh of a mechanical part 

 



  Number of nodes 10,462 
Number of Elements 10,086 
Number of Hexes 3,263(32%) 
Number of Prisms 1,459(14%) 
Number of Tets 5,364(53%) 
 
Total Volume 5,843.8 
Hex Volume 4,067.4(70%) 
Prism Volume    846.0(14%) 
Tet Volume    930.4(16%) 

(a) The hex-dominant mesh before 
applying transformations 

(b) Remaining tetrahedrons before 
applying transformations 

(c) Statistics before applying 
transformations 

  Number of nodes  10,221 
Number of Elements    7,979 
Number of Hexes    3,684 ( 46%) 
Number of Prisms    1,028 ( 12%) 
Number of Tets    3,267 ( 40%) 
 
Total Volume  5,818.5 
Hex Volume  4,682.8(80%) 
Prism Volume     596.8(10%) 
Tet Volume     538.9(  9%) 

(d) The hex-dominant mesh after 
applying transformations 

(e) Remaining tetrahedrons after 
applying transformations 

(f) Statistics after applying 
transformations 

Figure 13  Hex-dominant mesh of a cell-phone case 

 

  Number of nodes  4,918 
Number of Elements  5,382 
Number of Hexes  1,374(25%) 
Number of Prisms     695(12%) 
Number of Tets  3,313(61%) 
 
Total Volume  12,263.8 
Hex Volume    8,117.9(66%) 
Prism Volume    1,821.2(15%) 
Tet Volume    2,324.8(19%) 

(a) The hex-dominant mesh before 
applying transformations 

(b) Remaining tetrahedrons before 
applying transformations 

(c) Statistics before applying 
transformations 

  Number of nodes  4,849 
Number of Elements  4,530 
Number of Hexes  1,576(34%) 
Number of Prisms     502(11%) 
Number of Tets  2,452(54%) 
 
Total Volume  12,240.5 
Hex Volume    9,363.1(76%) 
Prism Volume    1,316.4(11%) 
Tet Volume    1,561.0(13%) 

(d) The hex-dominant mesh after 
applying transformations 

(e) Remaining tetrahedrons after 
applying transformations 

(f) Statistics after applying 
transformations 

Figure 14  Hex-dominant mesh of a PDA case 

 



  Number of nodes  11,511 
Number of Elements 20,613 
Number of Hexes    6,896 ( 33%) 
Number of Prisms    1,583 (   8%) 
Number of Tets  12,134 ( 59%) 
 
Total Volume      206.5 
Hex Volume      147.4(71%) 
Prism Volume        16.7(  8%) 
Tet Volume        42.4(21%) 

(a) Hex-dominant mesh before applying 
transformations 

(b) Remaining tetrahedrons before 
applying transformations 

(c) Statistics before applying 
transformations 

  Number of nodes  11,561 
Number of Elem3ds  17,758 
Number of Hexes    7,665 ( 43%) 
Number of Prisms    1,231 (   7%) 
Number of Tets    8,862 ( 50%) 
 
Total Volume       206.4 
Hex Volume       164.7(80%) 
Prism Volume         12.3(  6%) 
Tet Volume         29.5(14%) 

(d) Hex-dominant mesh after applying 
transformations 

(e) Remaining tetrahedrons after 
applying transformations 

(f) Statistics after applying 
transformations 

Figure 15  Hex-dominant mesh of a blood vessel for analysis of aneurysm: Due to varying cross-section, it is 
difficult to create a mesh of this geometry with a conventional method 

 


